
inky.com 1

Which deployment
model is right for me?

API vs Inline

http://www.inky.com
http://www.inky.com

inky.com 2

Several startups now offer API-based solutions to enhance email security,
particularly addressing the pervasive problem of phishing.

At INKY we’ve studied (and implemented) both API and inline deployment
styles to assess their relative merits. This document provides our own analysis
of the trade offs, and gives customers insight into why we no longer believe
API-based approaches are sensible.

APIs Explained
When vendors tout an “API-based solution”, they mean they access customer

mail using a REST API like the Microsoft Graph API or Gmail API. The platform

providers offer these APIs to make life easier for third party vendors: virtually

all developers these days know how to use REST APIs, and interfaces like these

work well with modern JavaScript frameworks.

This means that startups looking to add value to the email ecosystem don’t need

to hire people with specialized email protocol knowledge; the same developers

who write, say, user interface code, can also develop the code to access email.

This opens up the world of mail processing to a much larger potential pool of

vendors — a good thing overall.

http://www.inky.com

Advantages of API Access
Beyond the obvious advantages to the vendors, API approaches have some potential value

to customers as well.

The main advantage is simplicity: an API solution is easy to understand and easy to deploy:

conceptually, a customer admin user just needs to perform an oAuth authentication and

the vendor’s cloud services can begin processing the customer’s email.

Additionally, customers sometimes get comfort from the fact that the vendor’s service is

running alongside the customer’s mail flow, not in the middle of it. The feeling is that as

long as the vendor’s processing isn’t intermediating the mail flow, the customer can’t be

impacted if the vendor’s service is interrupted or somehow compromised.

API-based mail protection vendors trumpet these benefits, claiming “risk-free deployment

in minutes” in their marketing materials.

Downsides of API Access
Unfortunately, as in all things, there is no free lunch. The simplicity of REST API access

comes with some serious baggage.

The biggest challenge with API access is: since it’s by definition not inline, there is no

way to prevent mail from reaching the end user’s inbox. For mail protection scenarios in

particular, this a problem: what is the point of identifying a malicious email if that mail is

going to get delivered anyway?

There are workarounds to this problem: one is to configure Exchange or G-Suite to deliver

all mail to a temporary folder, then have the API-based third party software move mail

from this folder to the inbox only after the mail has been analyzed and found to be safe.

http://www.inky.com
http://www.inky.com

This is what we in the technical community would charitably label “a hack.” And before

declaring victory here, it’s important to realize two serious issues with this hack:

1. There’s nothing to prevent an end user from interacting with a malicious mail; they can just

go into the temporary folder to read it.

2. If the temporary folder is hidden to prevent problem #1, then the API-based third party

service is once again critical to the delivery of mail to the inbox — thereby negating one of

the primary advantages of using an API and not being inline in the first place.

API access is problematic in another regard as well: neither the Gmail nor the Microsoft APIs

allow any modifications to be made to emails. API users can move mails between folders, but

can’t modify the contents of emails.

This is bad because it means there’s no way for mail protection software to neutralize a

malicious email. An API-based solution can’t quarantine email, because it’s not inline. So what

should it do when it identifies a malicious email?

Inline mail protection systems like INKY can quarantine mail, of course,

but can also protect users via less draconian measures as well. INKY

(and other inline mail protection systems) can rewrite URLs in

suspicious emails to route them through a proxy page or block

them entirely. This obviously depends on the ability to

modify the email, so it’s infeasible for an API-based

solution.

http://www.inky.com

Uniquely, INKY can also add a color-coded informational banner to the top of the email:

a red “Danger” banner for malicious content or a yellow “Caution” banner for unusual,

sensitive, or suspicious content. This is very helpful for dealing with borderline cases,

where there simply isn’t enough information available to convict an email as malicious, but

where we really want the user’s guard to be up.

Here again, you need a deployment mechanism that allows modification of the email for

this to work. It’s worth pointing out that even the platform owners themselves — Google

and Microsoft — only add such notifications as user interface elements in their own clients,

which does nothing to help users using other clients like mail.app on iOS. Modifying the

email itself is key here.

Finally, we’ve found these APIs to be brittle and not scalable — they are meant for add-

on capabilities, not core mail functions. As a consequence, the platform owners change

them frequently, often with breaking changes, and put very little effort into ensuring they

are suitable for processing, say 100% of email for a 10,000 person company. The APIs are

simply not meant for industrial-strength deployments across entire organizations. This is

why Microsoft explicitly throttles both API calls and mailbox notifications.

In contrast, inline mechanisms rely on standards and software that have been refined for

literally decades. When we deploy INKY inline, we’re using standard SMTP protocols and

software stacks that have been proven to scale to arbitrary sizes with real-world systems

like Exchange, Postfix, and Sendmail. These standards address essential requirements

around confidentiality (TLS) and reliability (queuing and a store-and-forward architecture).

Our analysis is that while API-based solutions initially seem safer, they are in reality much

less likely to scale and perform reliably — so even from the standpoint of risk minimization,

they are inferior.

http://www.inky.com
http://www.inky.com

The one remaining advantage of an API-based access method — that it doesn’t require

familiarity with mail protocols or specialized practitioners — is of no value to us. That’s because

our whole mission in life is to be experts on mail and mail protection. We hire developers who

know everything there is to know about email and email standards, so why would we have

them use an API meant as training wheels for developers who don’t know these things?

Inline Deployment Variations
Given the decision to us inline deployments at INKY, the question remains: where exactly

should INKY’s processing be inserted?

Traditional mail protection vendors deploy as the so-called “MX” — the public-facing mail

server that all incoming email from the Internet hits first. This advantages the mail protection

vendor, because it gives them control: since they are the first to see and modify the email, all

downstream systems must accommodate them — and they need not worry themselves with

handling any upstream processes. It also means that doing anything with your mail requires

you to go through them — which gives them an opportunity to “engage” with you (i.e., work on

selling you up to more features).

For customers, however, MX deployments are painful: they require changing the public DNS

records for all email, to route the mail to a third party. Furthermore, if that third party is down,

the customer’s mail simply won’t be delivered!

This is why we generally deploy INKY inline but downstream from the customer’s existing MX.

The platform provider’s MX can still perform basic spam filtering before handing the mail off

to INKY. INKY can then perform its analysis and pass the mail back into the platform provider’s

infrastructure.

This is the best of both worlds for customers: it allows INKY to perform all the analysis and

http://www.inky.com
http://www.inky.com

inky.com 7
inky.com

modification it needs to, but without creating a

dependency on INKY as a service provider. Why

is this so? Because in this kind of deployment the

MX server itself communicates with INKY using

a timeout: it tries to send the mail to INKY via

SMTP and if INKY doesn’t accept the mail within,

say, 10 seconds, it just carries on and delivers

the mail normally, without INKY’s analysis. This

removes INKY’s infrastructure from the critical

path of mail delivery.

This deployment model also works for customers
who already use a third party as the MX. For
example, Proofpoint customers who are still
getting phished — we hear from these constantly
— can deploy INKY downstream from the
Proofpoint MX and the extra zero-day phishing
protection INKY provides.

Conclusion
We hope this discussion has shed some light on
what is otherwise a rather confusing topic.

At INKY we started without a dog in this fight:
we explored all three deployment methods (API,
MX, and inline downstream) and landed on our
standard model simply because it works the best
for most customers.

Have questions about INKY or interested
in seeing a live demo? Drop us a line.

http://www.inky.com
https://www.inky.com/get-inky/

